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1. Purpose and Scope 
This document is the first release of the CALIOP (Cloud-Aerosol LIdar with Orthogonal 
Polarization) Level 2 Algorithm Theoretical Basis Document describing the Scene Classification 
Algorithm (SCA). This baseline release supplants the descriptions of scene classification found 
in all prior drafts of the CALIOP Level 2 ATBD. 

This baseline release functions as the requirements document to the Algorithm Implementation 
Team for the CALIOP Level 2 scene classification algorithms. Section 2 provides an overview 
of the general classification approach to be used. Section 3 lists input parameters required for 
scene classification and the output parameters produced. Sections 4, 5, 6, 7, 8 and 9 provide 
discussions of the theoretical basis and design requirements for the classification algorithms that 
are implemented in the baseline (i.e., Build 5 or Launch Build) production code. The current 
document describes only the classification of features within the troposphere. Details on the 
classification of stratospheric features will be included in a future release. 
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2. Introduction 
The SIBYL algorithm (see PC-SCI-202, Part 2) scans lidar profiles throughout the troposphere 
and stratosphere, identifies regions of enhanced scattering, and records the location and simple 
characteristics of these atmospheric features. The purpose of the Scene Classification Algorithm 
(SCA), which is actually a set of algorithms, is to classify these layers by type. In addition to 
being incorporated into the output data products, some of the type classifications performed by 
the SCA are also required by the Hybrid Extinction Retrieval Algorithm (HERA).   

The functions of the Scene Classification Algorithms are indicated schematically in Figure 2.1. 
After the SIBYL has found a region in a lidar profile, the SCA first determines if the region is a 
feature or a “non-feature” based on the flag that has been generated by the SIBYL. Atmospheric 
features need to be discriminated between cloud and aerosol and then sub-typed by the SCA. 
Non-feature regions include clear air, surface, subsurface, or totally attenuated regions where no 
underlying feature or surface is found. If the region is surface, subsurface or totally attenuated, 
the SCA simply records this information in the Vertical Feature Mask (VFM). If the region is 
clear air, the SCA records it in VFM and selects the appropriate clear-air lidar ratio for the 
extinction retrieval in HERA. 

If the region is a feature, the SCA checks to see if the feature is elevated (if the molecular 
scattering signal is available both above and below the feature for layer transmittance retrieval). 
For an elevated feature, the SCA will derive the lidar ratio using the transmittance-constraint 
method [Fernald et al., 1972; Young, 1995]. A description of this method is provided in Section 
7. For both elevated and non-elevated layers, the SCA will classify the feature type and assign a 
lidar ratio to the feature for extinction processing in HERA. Note that if the feature is elevated 
and a lidar ratio can be computed using the transmittance method, the computed lidar ratio is  
used; if the feature is non-elevated, a lidar ratio is selected based on the model corresponding to 
the identified feature type. The selection of aerosol and cloud models is introduced in Sections 8 
and 9, respectively. 

For the feature classification, the SCA first determines if the feature is tropospheric or 
stratospheric by checking the base altitude of the feature. The criterion used is an altitude that is 
equal to the tropopause altitude + n km (n is an offset to be determined). The tropopause altitude 
is derived from ancillary data obtained from the Global Modeling and Assimilation Office 
(GMAO). If the feature base is lower (higher) than this altitude, the feature is classified as a 
tropospheric (stratospheric) feature.  

If a feature is in the troposphere, further classifications (using four algorithms) are conducted to 
sub-type the feature. The SCA first determines if a layer is cloud or aerosol, primarily using the 
layer mean value of the 532 nm attenuated backscatter coefficient, 532β ′ , and the attenuated color 
ratio, χ ′ , which is defined as the ratio of the mean attenuated backscatter coefficients measured 
at 1064 nm and 532 nm.  If the layer is classified as cloud, the SCA will then determine if it is an 
ice cloud or water cloud using the measured backscatter intensity and the depolarization ratio 
profiles, along with ancillary information such as layer height and temperature. The SCA will 
also use a combination of observed parameters and a priori information to select an appropriate 
extinction-to-backscatter ratio, or lidar ratio (Sa for aerosol layers, Sc for clouds), and multiple 
scattering function, η(z), required for extinction and optical depth retrieval.  To be consistent, the 
lidar ratio and multiple scattering function must be based on the same underlying aerosol or 
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cloud particle model. A constant value for the lidar ratio, as well as an array (as a function of 
range) for the multiple scattering function, are specified for each feature for later use in optical 
property retrievals.  

Stratospheric features are identified but not sub-typed. Stratospheric classification is planned as a 
part of the post- launch upgrade of the SCA code, where the sub-typing of Polar Stratospheric 
Clouds (PSCs) will be an important objective. The classification criteria used for features in the 
stratosphere will be somewhat different than for features found in the troposphere, though the 
same general classification approach can be used. The strategy of algorithm development of the 
stratospheric feature sub-typing is further discussed in Section 5.4.  
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Figure 2.1:  Overall flow of the baseline version of the CALIOP Scene Classification Algorithm.  
(dashed boxes indicate future enhancements) 
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3. Inputs and Outputs 

3.1. Required Input Data 
The layer-detection algorithm, SIBYL, computes several successive horizontal averages of lidar 
profiles and identifies the features which can be found at each stage of averaging.  SIBYL also 
computes a number of simple statistics for each of the identified features. The SCA will use 
almost all of the outputs from SIBYL. The following bullets list the primary parameters required 
for the classification of each feature. A complete list of input and output parameters, as well as 
the sources of the input parameters, is provided in the Scene Classification Algorithm Input and 
Output Requirements Document (PC-SCI-202 Part 5). 

• Feature base and top altitude 
• Temperatures and pressures for base, top, and mid-feature altitudes 
• Profiles of the 532-nm volume depolarization ratios within the feature 
• Estimates of γ′ (integrated attenuated backscatter at 532 nm) and the uncertainty in γ′ for each 

layer  
• Estimates of layer mean attenuated backscatter at 532 nm and 1064 nm and the uncertainties 

for each layer 
• Attenuated backscatter statistics for 532 parallel, 532 perpendicular, 532 total, and 1064 
• Estimates of χ′, layer-integrated attenuated total color ratio (1064/532) and the associated 

uncertainty, ∆χ′, for each layer  
• Estimates of 2

532T  (two-way transmittance at 532 nm) and the uncertainty in 2
532T  

• Geographical position (latitude and longitude) 
• Knowledge of the season and local (solar) time at the footprint position 
• Knowledge of the surface altitude from a digital surface elevation map 
• Surface type 

3.2. External Outputs 
External outputs (for each feature): 

• Stratospheric/tropospheric designation 

External outputs (for each tropospheric feature): 

• Aerosol/cloud flag 
• Aerosol type/cloud type  
• Classification confidence flags  
• For clouds, ice/water phase flag 
• Initial lidar ratio, Sa or Sc, and multiple scattering function, η(z) 
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4. Generalized Theoretical Basis 
Scene classification is performed based on the differences in the physical and optical properties 
of aerosols and clouds that are reflected in lidar signals. Layers are classified using rules that 
associate a measured physical or optical attribute (e.g., attenuated backscatter coefficient) or set 
of attributes with a particular class of atmospheric scatterer. To illustrate the general 
characteristics of aerosol and cloud scattering, Figure 4.1 was derived using the OPAC software 
package [Hess et al., 1998a, Hess et al., 1998b]. The scattering models used are maritime, 
continental, urban, desert, Arctic and Antarctic type aerosols; stratus, cumulus and cirrus clouds; 
and fog.  Three values of relative humidity (0%, 50%, and 90 %) are considered for the aerosols. 
Cirrus particles were assumed to be randomly oriented perfect or somewhat distorted hexagonal 
columns; otherwise, all particles are assumed to be spherical. The predicted properties are not 
completely accurate, as dust particles are assumed to be spherical rather than irregular, and ice 
crystals may have different properties than assumed here. The results are qualitatively useful, 
however. In general, clouds are seen to have larger backscatter coefficients and higher color 
ratios (~ 1) than aerosols. The exceptions to this general rule are desert aerosols and maritime 
aerosols under high relative humidity conditions, both of which exhibit relatively large color 
ratios. These scattering features can be used to distinguish aerosols from clouds. In addition, 
depolarization ratio is a useful indicator for identifying irregular particles and provides the means 
to discriminate ice clouds from water clouds and identify dust aerosols. 
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Figure 4.1: Example of modeled aerosol and cloud scattering properties calculated using the 
OPAC software package.  
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A generalized approach has been developed to assign a layer to one of two classes, based on one 
or more attributes. Consider the example of a hypothetical measured attribute X, and two 
possible classes of scatterers with which X can be associated. Functions P1(X) and P2(X) are 
probability density functions (PDFs) that define the probability that attribute X is associated with 
class 1 and class 2, respectively. 

The functions P1 and P2 are plotted in Figure 4.2. In this hypothetical example, if the measured 
attribute X < X*, the likelihood is very high that the measurement is associated with scatterer 
class 1.  Similarly, if X > X**, the likelihood is very high that the measurement is associated with 
class 2.  If the measurement falls in the “gray” area defined by X* < X < X**, it could belong to 
either class, but, based on probability considerations, will more likely belong to one or the other. 
In this case, consideration of additional attributes may allow an unambiguous classification. If no 
additional attributes are available the algorithm uses a selection rule to assign the feature to class 
1 or class 2, and estimates the level of confidence in the classification of the feature. 
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Figure 4.2: Conceptual probability distribution functions for test attribute X and two classes of 
scatterers. 

4.1. Scene Classification Schemes 

4.1.1. 1-D Histogram schemes 

4.1.1.1. Single-test scene classification 

In essence, classification is based on differences in the occurrence statistics of the observables of 
different feature types. For classification into one of two possible classes, such as aerosol and 
cloud, a confidence function f can be defined using scene occurrence PDF, P1 and P2, 
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Subscript 1 or 2 refers to class 1 or 2, respectively.  n1(X) and n2(X) are the number of 
occurrences of class 1 and 2 events at a given X.  N1 and N2 are the total occurrence number of 
class 1 and 2 events. The sign of f indicates the class: negative values signify class 1, and 
positive values signify class 2.  The absolute value Q = |f| provides the confidence level of a 
decision. The confidence level Q is related to the success rate Rs, which is the ratio of correctly 
classified events to the total number of events, and to the false rate,  
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(4.4)  

The confidence level Q has a linear relation to the success (or false) rate and therefore is a good 
measure of the classification confidence. 

4.1.1.2. Combined single-test scene classification 

In general, however, there is an ambiguous region for a given test due to the PDF overlap where 
the scene cannot be identified clearly. The use of multiple tests is expected to resolve this 
ambiguity. This is because there is the possibility that, when one test is in its low confidence 
(overlap) region, another test may be in the high confidence region, thereby providing high 
confidence in the classification. There still remains the problem of how to combine these single 
test confidence functions to achieve optimal scene classifications. Several potential combination 
schemes are summarized in the following: 

 
max 1 2max ( ) , ( ) , , ( )=   L mQ f X f X f X  (4.5)  

 
sum

1

( )
=

= ∑
m

i i
i

Q w f X  (4.6)  

where wi is a weight for test Xi, and m is the number of available test attributes. The scheme 
based on Eq.(4.5) is straightforward. It makes a decision according to the test that has maximum 
confidence. The sign of the confidence of this test determines the class of the scene and its 
absolute value represents the confidence of the decision. 
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The scheme based on Eq.(4.6) is an alternative.  It makes a decision according to the sum of 
properly weighted single test confidences. Again, the sign determines the scene class and the 
absolute value indicates the confidence of the decision.  

The confidence levels for the max and sum schemes have the relationships  

 
max 1 2 1 2

max max

( , , , ) max ( ) , ( ) , , ( )
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s f

Q X X X f X f X f X

R X R X
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and 
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For the max scheme, Qmax is related to the success rate of a single test which has the maximum 
magnitude of confidence function. On the other hand, for the sum scheme, Qmin is related to a 
weighted sum of success rates of all tests. Both are however related to single-test success rates 
rather than the rate at 1 2, , , mX X X⋅⋅⋅ . 

4.1.2. Multiple-Dimensional Histogram Based Scheme (Multiple-Test 
Scheme) 

This scheme is based on multi-dimensional PDFs. Let 1 2, , , mX X X⋅⋅⋅  be the results obtained 
from multiple tests. Then 1 1 2( , , , )mp X X X⋅ ⋅ ⋅  and 2 1 2( , , , )mp X X X⋅⋅⋅  are multi-dimensional PDFs 
of class 1 and 2 scene events, and the multiple-test confidence function is defined by 
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The ambiguity encountered in single-test or combined single-test scene classification may be 
improved greatly by multiple-test scene classification, because in multiple-test (dimension) space 
different class PDFs may separate well and therefore reduce the low confidence region, which 
will be discussed further below.   

Similar to the single-test scene classification, the multiple-test scheme assigns the scene class 
according to the sign of its confidence function. Its absolute value indicates the confidence level 
of the decision, and it is related to the success and false rates by 
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Similar to the single-test (one-dimensional) scheme, the confidence level Q for the multiple-
dimensional scheme is linearly related to the multiple-test success rate. 
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4.1.3. Noise Effects 

The test PDF can be widened by measurement noise.  As a result, the region of PDF overlap is 
increased and the ambiguity becomes more severe. That is, the noise can further reduce the 
decision confidence.   

If the distribution of test variation induced by measurement noise is pnoi(X), then the PDF of a 
measured test (noise-affected PDF) can be written as 

 
0

( ) ( ) ( ) ( ') ( ') 'n noi noip X p X p X p X p X X dX
∞

= ⊗ = −∫  (4.11)  

where p(X) is the noise-free test PDF. Figure 4.3 presents (a) artificially modeled test PDFs for 
two scene classes and noise-widened PDFs, and (b) the corresponding confidence functions. To 
simplify the simulations, a constant, signal- independent noise level is assumed. Though this 
assumption is not realistic, it does not materially affect the simulation study’s validity in 
demonstrating the general concept. Gaussian distributions are used for both the noise-free test 
distribution and the noise- induced test variation distribution. A “noise-to-signal” ratio (NSR) is 
calculated as the ratio of the standard deviation of the noise and the full width at half maximum 
of noise-free test distribution.  The NSR has a value of two in this example. In Figure 4.3(a) the 
solid curves are calculated PDFs and dotted curves are simulated PDFs. A normal random 
number generator is used to yield Gaussian-distributed noise. The noise-affected PDF is seen to 
be wider than the noise-free PDF, and the PDF overlap region is increased due to the PDF 
widening, resulting in additional ambiguity in the scene classification.  

To accommodate realistic (i.e., noisy) measurements, all of the above-described schemes must be 
modified to use the noise-broadened PDFs. Rewriting Eqs. (4.3), (4.5), (4.6), and (4.9) by 
replacing all noise-free PDF terms by the corresponding noise-affected PDF, as in Eq. (4.11), we 
get 

 

211,2,

211,2,

/)()(
/)()(

)(
NNXpXp
NNXpXp

Xf
nn

nn
n +

−
=  (4.12)  

 
,max 1 2max ( ) , ( ) , , ( )=   Ln n n n mQ f X f X f X  (4.13)  

 
,sum

1

( )
=

= ∑
m

n i n i
i

Q w f X
 

(4.14)  

 ,2 1 2 ,1 1 2 1 2
1 2

,2 1 2 ,1 1 2 1 2

( , , , ) ( , , , ) /
( , , , )

( , , , ) ( , , , ) /
n m n m

n m
n m n m

p X X X p X X X N N
f X X X

p X X X p X X X N N
⋅⋅⋅ − ⋅ ⋅ ⋅

⋅ ⋅ ⋅ =
⋅⋅⋅ + ⋅ ⋅ ⋅  

(4.15)  

In the presence of measurement noise, equations (4.12) through (4.15) are used in the scene 
classification schemes. 
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Figure 4.3: Probability distribution functions (PDFs) (a) and confidence functions (b). 

4.2. Comparisons of Different Schemes  

4.2.1. Schematic Comparison 

In general, the multiple-dimension histogram-based method is better than any single-test or 
combined single-test or low-dimensional histogram-based methods. This is further discussed in 
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this section using a 2-D distribution (2 tests) model shown in Figure 4.4. The discussion is 
limited to the comparisons between the 2-D method and the single-test (1-D) methods. 

There exists an ambiguous, low confidence region in the f-function where the class 1 and class 2 
PDF curves overlap. This region is area S in the example in Figure 4.4 for the 2-D method, and 
includes areas B1, B2 and S for the combined single-test method, and consists of the areas A2, B1, 
B2 and S for the single-test method using X1 (or the areas A1, B1, B2 and S using X2). Obviously, 
the PDF overlap is the smallest for the 2-D method, and therefore a classification with the lowest 
false rate should be achieved by using a 2-D method.  

Area S still remains as an ambiguous region. The 2-D confidence function method will not 
produce an unambiguous classification for features falling in this region. However, by increasing 
the number of tests – and simultaneously increasing the dimension of the confidence function – it 
may be possible to further reduce the ambiguous region. From a statistical point of view, the 
separation of different class clusters in higher dimensional space is generally more complete than 
in lower dimensional space. Increasing the number of dimensions should decrease the region of 
complete overlap between the two PDFs, thereby reducing the fraction of ambiguous 
classifications that are retrieved.  This can be seen clearly in the example in Figure 4.4 where the 
2-D cluster distributions have smaller overlap than the 1-D distributions of any test.  
  

 
 

Figure 4.4: A 2-D distribution model.  

4.2.2. Simulations 

Simulations have been conducted to compare all of the classification schemes described above.  
This section presents results of simulations of two-class scene classification using artificial test 
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models. Contour plots in Figure 4.5 show a three-dimensional Gaussian-distributed test model.  
A normal random number generator is used to yield Gaussian-distributed numbers to simulate 
the noise (or noise-caused test variation) effects.  Again, the noise-to-signal ratio, which is the 
ratio of standard deviations of noise distribution and noise-free test distribution, is used as a 
measure of noise. 1x108 signals with noise in X1, X2 and X3 at a level of NSR = 2 for each test 
have been generated.   

All schemes [Eqs. (4.12) – (4.15)] are then tested by applying them to the generated test signals.  
We define the false classification rate as the ratio of the number of incorrectly classified events 
to the total number of events at a given test value. Figure 4.6 presents simulated results of false 
rate as a function of X1 using different schemes. We have tested with different weight 
combinations for the sum scheme in the simulations. The equal weight combination (i.e., 
w1:w2:w3=1:1:1) showed the best classification results (lowest false rate), and we focus our 
discussion on the equal weight case for the sum scheme. 

For the single test scheme, Figure 4.6 shows that, at the point where the PDFs of the two classes 
cross and are equal (X1=200), Rf = 0.5; i.e., half of the decisions are wrong, which corresponds to 
a confidence level of 0.  This result cannot be overcome by using any single test alone.  
However, classification near the crossing point can be improved significantly by using multiple 
tests. As more tests are used, better classification results can be derived. In general, 3-D results 
are better than 2-D, and 2-D results better than single-test (1-D).  

 

 

Figure 4.5: X1-X2 space contour plots of a 3-D Gaussian-distributed test model for simulations. 

We note that, for the model used, the sum scheme with equal weights produces the same 
classification results as the 3-D scheme. We also note that for some cases the 3-D scheme and 
the sum scheme produce the same classification results. However, the 3-D scheme has a better 
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capability for accurately assigning the confidence level than that for the sum scheme (or any 
combined single-test scheme). The confidence level Q should reflect correctly the success (or 
false) rate of classifications. As discussed above, Q for the combined single-test schemes 
(Eq.(4.6) and (4.7)) can only be related to a single-test success rate, or to a weighted sum of all 
single-test rates, rather than to the success (or false) rate at [ 1 2, , , mX X XL ] in the multiple-test 
space, as the multip le-dimensional scheme does (Eq.(4.9)). To show this, we present simulated 
false rates as a function of X1 using the 3-D and sum schemes in Figure 4.7 when X2=180 and 
X3=200, along with the theoretical curves computed using Eq. (4.7) and (4.9). It is clearly shown 
that the sum scheme overestimates the false rate (except X1=220), whereas the 3-D scheme 
produces correct estimates. 
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Figure 4.6: False rates of classifications using the single-test (1-D), sum, max, and 2-D and 3-D 
schemes. 

In general, the multiple-dimensional scheme produces better classifications and assignments of 
confidence levels than combined single-test schemes that use the same number of tests.  
Furthermore, the multiple-dimensional scheme generates better results when executed in a higher 
dimensional space (i.e., when using a larger number of tests). For the CALIOP cloud and aerosol 
discrimination, we employ a 3-D scheme as described below. 
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Figure 4.7: Simulation results of false rates as a function of test X1 for the 3-D scheme (a) and 
sum scheme with equal weight (b) along with theoretical curves from Eq. (4.8) and (4.10). 
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5. Discriminating Aerosols from Clouds 
A 3-D operational algorithm has been developed for the CALIOP data processing [Liu et al., 
2004], and tested with data from the Cloud Physics Lidar (CPL) [McGill et al., 2002] and the 
Lidar In-space Technology Experiment (LITE) [Winker et al., 1996]. Test attributes included are 
the layer-averaged attenuated backscatter β ′  at 532 nm, the layer- integrated attenuated volume 
color ratio χ′, and the layer center altitude z.  The layer- integrated volume color ratio is the ratio 
formed by dividing the layer-integrated attenuated backscatter at 1064 nm by the layer- integrated 
attenuated backscatter at 532 nm.  The limits of the integration are from layer top to layer base.  
The layer center altitude is the average of the detected layer top and base altitudes.  Including 
height information with the layer optical properties should increase the effectiveness of any 
cloud-aerosol separation scheme.  This is because the optically thinner clouds that contribute 
most to the overlap of PDF with aerosols generally appear in higher altitudes, whereas aerosols 
concentrate mostly in the planetary boundary layer (PBL). Details are described below. 

5.1. Approximation of noise distribution  
To compute the noise-broadened PDFs, distributions of the variations in the test attributes β ′ and 
χ′ due to noise must first be derived or estimated. The CALIOP 532 nm and 1064 nm receiver 
channels use, respectively, photomultiplier tubes (PMTs) and an avalanche photodiode (APD), 
all operated in analog detection mode. The Gaussian distribution is a good approximation for the 
multiplication process for both PMTs and APDs. The algorithm therefore assumes Gaussian 
distributions for the noise- induced variations in β ′ at both 532 nm and 1064 nm.  If we designate 

0β ′  and 0χ ′ as the measured value of β ′  and χ ′ , then the probability that the true value of β ′ is 
actually measured as 0β ′  is given by 

 2
0

0 2

( )1
( , ) exp

22noisep
ββ

β β
β β

σπ σ ′′

 ′ ′−
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  (5.2)  

and C is the lidar calibration constant, r is the mean range from lidar to the feature, BGP∆  is the 
background noise in science digitizer readings averaged over a number of laser pulses equal to 
Nshot (corresponding to the horizontal resolution), GA is the variable gain, and NSF is the noise 
scale factor for the gain-normalized digitizer reading. For a description of NSF, see the CALIOP 
Level 1 ATBD (PC-SCI-201). 

The noise distribution for χ′ can then be derived from the Gaussian noise distributions of β ' at 
532 nm and 1064 nm wavelengths: 
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5.2. Description of Operational Tropospheric Algorithm 
Figure 5.1 presents a flowchart of the CAD algorithm.  The  algorithm first selects noise-free 
PDF files from an existing PDF database that has been compiled based on previous 
measurements. The stored PDF files have a 100x100x20 array structure: Dimension 1 (ib=1:100) 
is test 532lnXb β ′= , starting from startXb = -12, with an increment Xb∆ = 0.014 [m-1sr-1]; 
Dimension 2 (ix=1:100) is Xx χ ′= , starting from 0, with Xx∆ = 0.02; and Dimension 3 
(iz=1:20) is Xz , starting at 0, with Xz∆ =1 [km]. Here Xb, Xx, and Xz represent the test values, 
and ib, ix, and iz represent the index of the corresponding test (Xb, Xx, Xz) into the PDF array. 
For each feature, layer products 532β ′ , 1064β ′ , χ ′ , and z  are read as input along with estimated 
uncertainties 532β ′∆ , 1064β ′∆  and χ ′∆ . In the following description of the algorithm, subscript 0 is 
used to indicate these measured values, i.e., 532,0β ′ , 1064,0β ′ , 0χ ′ , and 0z , and the corresponding 

index is 0 532,0(ln( ) / )ib Int Xb′= ∆β , 0 0( / )ix Int Xx= ∆χ , 0 0( / )iz Int z Xz= ∆ , where “Int” represents 
conversion to an integer value.  

Assuming the z values are noise free, the computation is essentially a 2-D ( β ′  and χ ′ ) problem. 
The noise-affected confidence function, 532,0 0 0( , , )nf z′ ′β χ , can then be computed as follows. 

First, the 2-D noise-free PDFs for 0iz iz= , 0( 1:100, 1:100, )aerosolP ib ix iz= =  and 

0( 1:100, 1:100, )cloudP ib ix iz= = , are selected. PDFs affected by noise in β ’ at 

,0 ,0(ln( ) / )ib Int Xb′= ∆λ λβ  and 0iz , 0 0( , 1:100, )aerosolP ib ix iz=  and 0 0( , 1:100, )cloudP ib ix iz= , are 
then computed using  
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where subscript j indicates “aerosol” or “cloud”. ibσ can be computed using Eq.(5.2). The noise 
distribution for χ ′  can then be computed numerically [Eq.(5.3)] using, 
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Where 532 1064 532 10642max[ , , , ]dBeta ′ ′ ′ ′= ∆ ∆β β β β . The color ratio dimension of the PDF files 
covers a range of [0, 2). The real (1064/532) color ratio of natural scatterers that lidar  measures 
is generally in this range. However, there exists the possibility that some measured features have 
a color ratio outside this range. Negative values could be frequently observed for faint scatterers 
(mostly aerosols) because the backscattered signal from these features at 1064 nm is relatively 
small and noisy, which may result in negative value of backscatter. For features having negative 
color ratio, χ ′  can be set to zero. In practice, however, the code sets it to be 0.02, as required by 
the programming (to avoid returning empty call). A value of color ratio larger than 2 may be 
derived due to system characteristics such as the different transient response (or saturation) of the 
detectors used in the two channels. In this case χ ′  is set to 1.98 (ix0=100). Noise distribution for 
the color ratio (a 200-element array) is computed covering a range from 0 to 4.  If the color ratio 
is larger than 2, a Gaussian distribution centered at ix0=100 is computed.  

 

D1=lnβ', -12 to 2, δ(lnβ ') = 0.14, [m-1sr-1]
D2=χ',    0 to 2,     δχ' = 0.01
D3=z,     0 to 20,   δz = 1,           [km]

Layer Products
(β'532, β'1064, ∆β'532,
∆β'1064,  χ', ∆χ', z)

PDF Database
Paerosol(1:100, 1:100, 1:20)
Pcloud(1:100, 1:100, 1:20)

Extract
Paerosol(1:100, 1:100, iz0)
Pcloud(1:100, 1:100, iz0)

iz0=Int(z/∆Xz)

Compute
Paerosol ,n(ix=1:100)
Pcloud,n(ix=1:100)
using Eq. (5.4)

Compute
Paerosol,n(ix0), Pcloud,n(ix0)

using Eqs. (5.5) and (5.6)

fn < 0

Compute fn, using Eq. (5.7)

Cloud Aerosol

No

Yes

 

Figure 5.1: Flowchart of the 3-D CALIOP CAD algorithm. 
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The noise-affected PDFs can be derived using 
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Finally, the noise-affected confidence function is computed using 
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If the computed value of confidence function is negative, the feature is classified as aerosol; if 
the computed value is positive, the feature is classified as cloud; and if the computed value is 
zero, the feature is classified as “undetermined”.   

Classification results will be further processed by the aerosol typing algorithm if the feature is 
classified as an aerosol or by the phase classification algorithm if the feature is classified as a 
cloud. The details for these additional classification algorithms are described in Sections 6, 8, 
and 9. 

5.3. Algorithm Tests  
The Cloud Physics Lidar (CPL) is a three-wavelength polarization-sensitive airborne lidar 
system [McGill et al., 2002] that detects the perpendicular and parallel components of the 
backscatter profile at 1064 nm, and total backscatter profiles at 532 nm and 355 nm.  Included 
among the comprehensive suite of CPL post- flight data products are feature boundaries, layer 
type (i.e., cloud or aerosol), and range-resolved extinction and backscatter coefficients. The 
feature types were classified by the GLAS prototype layer discrimination algorithm [Palm et al. 
2002]. The CPL datasets are thus an ideal data source for CALIOP algorithm tests, as direct, 
straightforward comparisons can be made between the CALIOP test results and the CPL data 
products. A dataset acquired during the 2003 THORPEX-PTOST campaign conducted in 
Honolulu, Hawaii from February 18 to March 14, 2003 was used to test the performance of the 
cloud-aerosol discrimination algorithm.  During THORPEX-PTOST, the CPL acquired 
backscatter data on nine scheduled ER-2 flights.  The CALIOP algorithm test set consists of all 
of the data acquired during these flights. In addition, all data acquired on the ER-2 transit flight 
from California to Hawaii is also used. In total, the test set consists of approximately 49 hours of 
CPL measurements. 

Figure 5.2(a) presents an example of 532 nm attenuated backscatter signals acquired by CPL.  
The data shown was acquired between 19:45:32 and 20:15:26 on February 19, 2003. Four high 
cloud layers above 5 km are observed. PBL aerosols as well as some low broken clouds are also 
seen.  An optically thin aerosol layer exists above the PBL and below 5 km.  Layer boundaries 
have been determined by a threshold-based feature finder incorporated into the CPL data 
analysis software. Feature locations, together with the classifications assigned by the GLAS 
algorithm are shown in Figure 5.2(b). Colors indicate feature type: red is aerosol; blue is cloud.  
Most layers have been successfully detected, excepting only those optically very thin layers or 
layers obscured by overlying, optically dense cloud layers.  Application of the CPL layer finder 
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to the entire 10-flight dataset yields a total of 228264 features, all of which are used as input to 
test the CALIOP cloud-aerosol discrimination algorithm.   

For each layer, the mean attenuated 532 nm backscatter, 532β ′ , is derived by averaging the 
calibrated and range-corrected 532 nm signals over the detected layer upper and lower 
boundaries. The 1064 nm to 532 nm volume color ratio, χ′ , is obtained from the ratio of the 
averaged attenuated 1064 nm and 532 nm backscatters, 1064β ′  and 532β ′ . Uncertainty is calculated 
for each parameter based on error propagation theory [Bevington and Robinson, 1992].  Random 
errors due to noise are dominant when features are optically thin. Only random error is taken into 
account.  Measured layer altitudes are assumed to be accurate. 

 

Figure 5.2: An example of cloud-aerosol classification. 

A PDF database was developed using lidar observations and model data. Consistent with the 
measurements of Beyerle et al. [2001], the mean attenuated volume color ratio for clouds is 
characterized using a normal distribution. Based on the author’s analyses of the LITE data, a 
normal distribution was also selected for use with aerosol color ratios. The initial means and 
standard deviations for the color ratio PDFs were derived from model studies using OPAC.  That 
normal distributions represent appropriate approximations for both cloud and aerosol color ratio 
distributions can be further verified by inspection of the CPL THORPEX observations. A 
lognormal distribution has been employed to represent the mean attenuated backscatter 
coefficient for aerosols. LITE data analyses  as well as other lidar measurements,including those 
acquired at numerous EARLINET stations, show that aerosol backscatter can be well 
characterized by a lognormal distribution [Post, et al., 1982; Matthias and Bösenberg, 2002; 
Bösenberg et al., 2001]. The aerosol backscatter distribution parameters used in this work were 
derived from the LITE aerosol measurements. For cloud backscatter coefficients we employ a 
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multi-modal distribution retrieved from the LITE cloud data. In order to automatically 
accommodate the huge amount of new data that will be collected during the lifetime of CALIOP, 
the distribution parameters for both clouds and aerosol can be adjusted iteratively during the 
classification process. This iterative improvement procedure was employed during the tests with 
the THORPEX-PTOST data set.  

 

 

Figure 5.3: Scatter plots of mean attenuated volume color ratio and backscatter of nearly 
230,000 features observed by CPL during the THORPEX-PTOST mission. 

The results produced from the CALIOP CAD algorithm are quite consistent with the GLAS 
results: only 5.7% of total 228,264 features have been classified as different type by the GLAS 
and CALIOP algorithms. Our case studies (e.g., Figure 5.2) showed, however, that the CALIOP 
CAD algorithm can provide better classification for high optically thin clouds. This is because a 
better separation of cloud and aerosol clusters can be achieved in this β ’-χ’-z space, and the 
degree of separation of cloud and aerosol clusters is an essential limit on the performance of any 
scene classification scheme. Figure 5.3 presents scatter plots of the mean attenuated backscatter 
and volume color ratio of the features observed by CPL during the THORPEX-PTOST mission. 
Good separation between clouds and aerosols in the volume color ratio-altitude space is seen 
above ~1.5 km. In addition, the mean attenuated volume color ratio is less sensitive to the 
attenuation of overlying clouds, because the cloud scattering has weak wavelength dependence 
in the visible and near- infrared region and, as a result, taking ratio of the two attenuated 
backscatter values can cancel the effect of the attenuation of overlaying clouds.    

5.4. Algorithm Enhancement Strategy  
The 3-D CAD algorithm described above is used for the CALIOP cloud-aerosol discriminations 
in the troposphere.  In the future, additional classification schemes will be added for the 
stratosphere, The CAD algorithm for the stratosphere will be somewhat different from the 
tropospheric algorithm, because there are polar stratospheric clouds (PSCs) in the polar region. 
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There exist three major types of PSCs: types Ia, Ib, and II [Browell et al., 1990]. Type Ib PSCs 
have low backscatter and low depolarization, and usually consist of liquid HNO3/H2SO4/H2O 
particles. The other two types of PSCs, on the other hand, have high depolarization ratios. Type 
Ia PSCs are composed mostly of nitric acid trihydrate (NAT) crystals. Type II PSCs consist 
mainly of water ice particles (and are therefore very similar to cirrus clouds). A two-step 
algorithm for distinguishing between these classes can then be proposed as follows:  

• By testing the volume depolarization ratios using the 1-D scheme, the features in the 
stratosphere can be separated first into two classes.  Class one will contain all aerosols 
and type Ib PSCs, and class two will include type Ia and type II PSCs. 

• Subtyping within each of these two classes (e.g., discrimination between aerosols and 
type Ib PSCs, and between type Ia and type II PSCs) will be accomplished using the 
same 3-D algorithm that is currently used for tropospheric classification.  The PDF files 
required for stratospheric discrimination will be developed when CALIOP polar data 
becomes available after the CALIPSO launch. 

The volume depolarization ratio is a useful indicator for identifying irregular particles [e.g., 
Sassen, 1991], and it provides the means to discriminate between ice clouds and water clouds 
and between dust layers and spherical aerosols. As described above, depolarization ratios can be 
used for stratospheric scene classification. Furthermore, it should also prove useful in the 
identification of diamond dust in the polar region. Depolarization is also a candidate for 
inclusion in the parameter space used for future improvement of cloud-aerosol discriminations. 
At lower altitudes, the depolarization ratio should be especially helpful in distinguishing dense 
desert dust aerosols from water clouds and diamond dust (consisting of nonspherical ice crystals) 
from arctic haze. Nonspherical dust particles can produce high depolarization ratios [Gobbi et 
al., 2000; Murayama et al., 2001], as can ice crystals, whereas, when multiple scattering can be 
neglected, the spherical droplets in water clouds generally yield no depolarization. However, we 
note here that for space-borne lidars the depolarization due to the multiple scattering in dense 
water clouds could be an issue [Hu et al., 2001]: the high altitude of the orbit (e.g., 705 km for 
the CALIPSO satellite) results in a large footprint on the ground even for the small receiver field 
of view. Introducing a depolarization ratio test into the CALIOP algorithm would thus require 
the development of PDFs for cloud and aerosol depolarization ratios that correctly account for 
the effects of multiple scattering. Unfortunately, as neither LITE nor GLAS was configured as a 
polarization-sensitive instrument, no space-based measurements of depolarization ratio are 
available for testing such PDFs. Therefore, it is currently difficult to make reliable assessments 
regarding the utility of an additional depolarization ratio test. However, revisiting the issue will 
become possible once sufficient data has been collected by the CALIPSO mission itself. 
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6. Discriminating Water and Ice Clouds 
This section introduces the cloud ice/water phase discrimination algorithm in the CALIOP 
baseline code, and discusses studies of mixed phase cloud identification. The CALIOP baseline 
Ice-Water Algorithm (IWA) will primarily use layer integrated depolarization ratio, δ, and 
temperature to classify cloud phase as ice or water.  We begin by discussing several issues which 
must be considered in developing an ice-water phase algorithm 

6.1. Theoretical background 

6.1.1. Particle Depolarization   

The transmitted lidar beam is nearly 100% linearly polarized.  Depolarization of the return signal 
from the molecular atmosphere is about 0.35% due to the narrow optical bandwidth of the 
receiver which blocks most of the highly polarized Stokes and anti-Stokes lines.  It is well 
known from ground-based and airborne observations that backscattering from ice crystals results 
in appreciable signal in a polarization plane perpendicular to the plane of the transmitted lidar 
beam (Sassen, 1991).  Depolarization from ice crystals depends on crystal shape and aspect ratio 
but is typically in the range of 30%-50%.  Lower values can be seen when horizontally oriented 
particles are present (Sassen and Benson, 2001).  In contrast, backscattering from spherical water 
droplets preserves the polarization of the incident light. However, if a water cloud is optically 
thick, multiple scattering can give rise to appreciable depolarization.  Monte Carlo modeling has 
been used to study the details of multiple scattering in ice and water clouds. Preliminary results 
shown below indicate ice/water phase can be distinguished even for dense cloud by considering 
the shape of the depolarization ratio profile. 

 

Figure 6.1: Cloud temperature statistics from MODIS cloud products. 
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6.1.2. Cloud Temperature Test  

In cases where classification using the depolarization signal is ambiguous, it may be possible to 
perform the classification using cloud temperature.  The lidar profile provides unambiguous 
cloud height, and the temperature is then determined using temperature profiles from a gridded 
analysis.  Statistics on the observed frequency of cloud ice and water as a function of cloud 
temperature can be derived from various observations, such as MODIS cloud measurements (see 
Figure 6.1). Cloud temperature can be estimated from the observed cloud height and temperature 
profiles obtained from gridded synoptic analysis products.  If the temperature at cloud base is 
lower than -45°C, it can be assumed the cloud is an ice cloud [Pruppacher, 1995]. If the 
temperature at cloud top is higher than 0°C, then it can be assumed that the cloud is a water 
cloud.  If the top/base temperatures fall between these extremes, either ice, water, or a mixture of 
the two may exist. 

6.1.3. Evaluating Multiple Scattering Effects 

Compared with ground-based lidars, the footprint size (on the order of 100 meters or more) for 
space-based lidars is large. A significant portion of the lidar signal from a cloud can come from 
multiple scattering. A Monte Carlo model with full-Stokes vectors has been developed to 
quantitatively evaluate the impact of the multiple scattering on cloud phase discrimination [Hu et 
al., 2001] and the simulations shown in Figure 6.2 were based on this model.  As demonstrated 
by these results, multiple scattering increases the depolarization ratio, especially for water 
clouds, and thus creates difficulties in cloud phase discrimination. 

 

Figure 6.2: Depolarization of water cloud backscattering due to multiple scattering. 

6.1.4. Mixed-Phase Clouds 

Mixed-phase clouds are common, especially in the Arctic [Shupe et al., 2001)]. While many 
mixed-phase clouds are optically dense and cannot be fully profiled with lidar measurements, 
some mixed-phased clouds, having a thin- layer of supercooled water above ice [Rauber and 
Tokay, 1991], can be clearly identified by CALIOP. While a cloud layer of pure water or pure ice 
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can be identified from the layer- integrated depolarization ratio, identification of mixed-phase 
cloud requires vertical profiles of  depolarization. For example, we need to look for a 
discontinuity in depolarization (from zero to more than 30%) for a thin layer of supercooled 
water on top of cold ice clouds.  

6.1.5. Anomalous Backscatter for Oriented Particles 

Clouds composed primarily of horizontally oriented ice crystals occur and have a signature of 
low depolarization [Sassen and Benson, 2001; Platt, 1978], so in this case the depolarization test 
fails to identify ice particles.  Horizontally oriented crystals also exhibit a strong backscatter 
signal and a lidar ratio which is “anomalously” low (Platt and Dilley, 1981) because the 
backscatter coefficient is greatly enhanced compared to randomly oriented crystals.  Supercooled 
water droplets also exhibit a strong backscatter signal, but have a lidar ratio typical of other 
water clouds, of about 18.  Therefore, values of the cloud lidar ratio, Sc, derived from the 
integrated attenuated backscatter and two-way transmittance of  transparent layers (refer to 
Section 7) can be used to identify horizontally oriented ice crystals and discriminate them from 
supercooled water droplets.  

6.2. Algorithm Description 

6.2.1. Inputs and Outputs of the Algorithm 

The primary input data for cloud phase determination includes: 

1. cloud top and base temperatures, 
2. layer integrated depolarization ratio and uncertainty 

 

The layer integrated volume depolarization ratio is the ratio of the integrals of the parallel and 
perpendicular components of the attenuated total backscatter, 

 
||'( ) / '( )

top top

base base
r dr r drδ β β⊥= ∫ ∫ . (6.1)  

where β '⊥(r) and β '||(r) are perpendicular and parallel attenuated backscatter profiles. 

The key output parameters are: 

1. index of cloud phase (0 = undetermined; 1 = ice; 2 = water; and 3 = oriented plates; 
however, recognition of oriented plates has not been implemented in the baseline version 
of the algorithm) 

2. uncertainty flag (0 to 4: from minimum confidence to maximum confidence) 

6.2.2. Probability Functions 

There will be 3 groups of probability functions (for ice, water, and oriented plates) for each 
individual parameter or parameter set: 

a) cloud temperatures (top and base) 
b) layer integrated depolarization ratio  
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The baseline version of the algorithm, however, only implements identification of ice and water. 
The probability functions of ice and water as a function of temperature are modeled as 

 1
( ) ;

1 exp( ( ) )

( ) 1 ( ).

w top
top

i top w top

P T
a T c d

P T P T

=
+ − ⋅ − +

= −
 (6.2)  

Where Ttop is the temperature at the cloud top, subscripts w and i indicate water and ice, a, c, and 
d are constants that will be updated after the launch. The computation of the probability 
functions of ice and water for the depolarization ratio is discussed in the following subsection. 

6.2.3. Probability Function for Depolarization Ratio in the Presence of 
Noise: Sigmoidal Functional Form 

We start with the following example. Assuming that we know the ice cloud threshold value is 
C=0.2 for a certain cloud optical depths, what is the probability of the cloud phase being ice if 
the measured depolarization ratio is 0.15 and the signal-noise-ratio (SNR) is 3? The answer can 
be found by calculating the shaded area under the curve shown in Figure 6.3:; which is  

 2

2
( )

[ ] ( )
c c

P c p d e d
∞ ∞ ′−

−
′ ′ ′> = =∫ ∫

δ δ
σδ δ δ δ  (6.3)  

By applying the sigmoidal approximation illustrated in Figure: 6.4:, the integration can be 
simplified into an analytic form which speeds up the estimation of the probability: 

 1 1
2.3 ( )

[ ] 1 exp 1 exp 2.3 ( )
c

d SNR
P c d c

d

− −∞
′ − ⋅ −      ′> ≈ + = + − ⋅ −      ′       ∫

δ δ
δ δ δ

δ σ δ
 (6.4)  
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Figure 6.3:  Probability that depolarization, δ, is greater than ice cloud threshold value c. 
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Figure: 6.4: Simplif ication of the integration of a Gaussian using a sigmoidal approximation. 

In the baseline version of the algorithm, the probability functions for the water and ice phase are 
computed using 

 1( , )
1 exp[ 2.3 ( )]

1( , ) 1
1 exp[ 2.3 ( )]

∆ =
+ − −

∆ = −
+ − −

w

i

w

i

P
SNR c

P
SNR c

δ δ
δ

δ

δ δ
δ

δ

 
(6.5)  

Where, cw and ci are coefficients that are computed as a function of layer-averaged attenuated 
backscatter. SNR=δ/∆δ and ∆δ is the uncertainty of δ.  Figure 6.5 presents examples of 
probability functions computed using Eq. (6.5) for noisy and low-noise cases, i.e., SNR=2 and 
1000. For the low-noise case, it is shown that there is a low depolarization ratio threshold of 
around 0.05 and a high threshold of 0.25. When the depolarization ratio is smaller than the low 
threshold, the feature is a water cloud; when the depolarization ratio is larger than the high 
threshold, the feature is an ice cloud. Theoretically, if the depolarization ratio lies between the 
low and high thresholds, the feature should be a mixed phase cloud. However, the depolarization 
ratios of both water clouds and ice clouds can lie between the low and high threshold due to 
noise in the signals (refer to the dotted curves). On the other hand, a mixed phase cloud could 
have a depolarization ratio of either smaller than 0.05 or larger than 0.25, again due to the noise.  
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Figure 6.5: Examples of probability functions for the water and ice phase for SNR=2 and 1000. 

6.2.4. Composite Probability Functions  

For features whose classification is indeterminate based solely on depolarization (mostly for 0.5 
< δfeature < 0.25), we introduce the composite probability function 

 ( , ) ( )* ( ),        ( 1,2)K K KP T P T P Kδ δ= =  (6.6)  

where K=1 represents ice, K=2 represents water, and T represents the feature top temperature. 
After calculating both composite probabilities, the cloud phase is selected as the one with the 
largest probability.  

6.2.5. Flowchart of Ice-Water Algorithm 

The baseline IWA performs cloud phase classifications of water and ice based on tests of 
depolarization ratio and temperature at the feature top. A cloud is classified as “water”, “ice”, or 
“unknown”. These unknown features could be mixed phase clouds, features that have very poor 
SNR, or mistakenly classified non-cloud features.  The subtyping of mixed phase clouds (ice 
over water, water over ice, ice-plate, or mixture of ice particles and water droplets) is an ongoing 
study and the theoretical basis is described in Subsection 6.5.  Classification of clouds as “mixed 
phase” has not yet been implemented in the IWA code. 

A flowchart of the baseline IWA is presented in Figure 6.6:. For each feature that has been 
classified as cloud by the CAD module, the IWA will further identify its phase (water or ice). 
The IWA first reads the cloud layer- integrated depolarization ratio and its uncertainty (δ, ∆δ), the 
temperature at the feature top (Ttop), and the layer-averaged attenuated backscatter at 532 nm (β '). 
It then computes the probability functions for the depolarization ratio and temperature using, 
respectively, Eqs. (6.2) and (6.5). The classification is first conducted based on the 
depolarization ratio test. When the result of the depolarization ratio test is ambiguous, the 
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classification is then conducted based on the composite probability function of depola rization 
ratio and cloud-top temperature. 

A confidence value, Q,  (0 ≤  Q ≤ 1) is also computed. Q is evaluated as the maximum of P(δ,∆δ) 
and P(Ttop) when the decision is made using the depolarization ratio only, or as the square-root of 
the product of P(δ,∆δ) and P(Ttop) when the composite probability function is used.  For values 
of Q greater than 0.75, we assign a ‘maximum confidence’ level (QC flag = 1) to the IWA 
classification.  Similarly, for Q between 0.50 and 0.75, the IWA classification is judged to have 
‘high confidence’ (QC flag = 2).  The ‘low confidence’ regime (QC flag = 3) covers the range 
from 0.25 ≤ Q ≤  0.5.  Finally, if Q is less than 0.25, then we assign ‘no confidence’ (QC flag = 
0). 

Table 6.1  QC flag assignments based on confidence value Q. 

Q QC Flag 

> 0.75 1 

0.50 < Q < 0.75 2 

0.25 < Q <0.50 3 

< 0.25 0 
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Ttop, δ, ∆δ, β'
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Figure 6.6: Flowchart of the baseline version of the ice-water algorithm. 
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6.3. Test results 
Test results using artificially generated cloud fields are given below.  The results show that the 
algorithm can identify all the water clouds properly.  Ice clouds with depolarization ratios greater 
than 0.3 can also be easily identified.   

However, for mixed phase clouds and oriented plates mixed with ice clouds, of which the layer 
integrated depolarization ratio can drop far below 0.3, it is likely that they are identified as water 
clouds by the baseline code.  As an ongoing improvement on the baseline code, the concept of 
the discrimination of mixed phase clouds is described in Section 6.5. 

Table 6.2 Some test results of IWA 

Depol. ratio β’ SNR T Phase a) Conf Q 
0.500 0.005 8.00 230.0 2 1.000 
0.500 0.055 13.00 235.0 2 1.000 
0.500 0.105 18.00 240.0 2 1.000 
0.500 0.155 23.00 245.0 2 1.000 
0.500 0.205 28.00 250.0 2 1.000 
0.500 0.255 33.00 255.0 2 1.000 
0.500 0.305 38.00 260.0 2 1.000 
0.500 0.355 43.00 265.0 2 1.000 
0.500 0.405 48.00 270.0 2 1.000 
0.500 0.455 53.00 275.0 2 1.000 
0.500 0.505 58.00 280.0 2 1.000 

      
0.012 0.005 4.00 230.0 1 0.968 
0.032 0.055 5.00 235.0 1 0.960 
0.052 0.105 6.00 240.0 1 0.943 
0.072 0.155 7.00 245.0 1 0.916 
0.092 0.205 8.00 250.0 1 0.875 
0.112 0.255 9.00 255.0 1 0.823 
0.132 0.305 10.00 260.0 1 0.924 
0.152 0.355 11.00 265.0 1 0.982 
0.172 0.405 12.00 270.0 1 0.996 
0.192 0.455 13.00 275.0 1 0.999 
0.212 0.505 14.00 280.0 1 1.000 

 a) 1: water; 2: ice; 3: undetermined 

Depol. ratio β’ SNR T Phase a) Conf Q 
0.300 0.005 5.00 230.0 2 0.998 
0.300 0.055 7.00 235.0 2 0.993 
0.300 0.105 9.00 240.0 2 0.987 
0.300 0.155 11.00 245.0 2 0.993 
0.300 0.205 13.00 250.0 2 0.996 
0.300 0.255 15.00 255.0 2 0.997 
0.300 0.305 17.00 260.0 2 0.997 
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Depol. ratio β’ SNR T Phase a) Conf Q 
0.300 0.355 19.00 265.0 2 0.996 
0.300 0.405 21.00 270.0 2 0.994 
0.300 0.455 23.00 275.0 2 0.988 
0.300 0.505 25.00 280.0 2 0.969 

      
0.012 0.005 3.50 230.0 1 0.952 
0.032 0.055 4.00 235.0 1 0.927 
0.052 0.105 4.50 240.0 1 0.892 
0.072 0.155 5.00 245.0 1 0.846 
0.092 0.205 5.50 250.0 1 0.793 
0.112 0.255 6.00 255.0 1 0.735 
0.132 0.305 6.50 260.0 1 0.924 
0.152 0.355 7.00 265.0 1 0.982 
0.172 0.405 7.50 270.0 1 0.996 
0.192 0.455 8.00 275.0 1 0.999 
0.212 0.505 8.50 280.0 1 1.000 

 a) 1: water; 2: ice; 3: undetermined 

Depol. ratio β’ SNR T Phase a) Conf Q 
0.200 0.005 5.00 230.0 2 0.707 
0.200 0.055 7.00 235.0 2 0.700 
0.200 0.105 9.00 240.0 2 0.675 
0.200 0.155 11.00 245.0 2 0.609 
0.200 0.205 13.00 250.0 2 0.462 
0.200 0.255 15.00 255.0 2 0.256 
0.200 0.305 17.00 260.0 3 0.202 
0.200 0.355 19.00 265.0 1 0.411 
0.200 0.405 21.00 270.0 1 0.996 
0.200 0.455 23.00 275.0 1 0.999 
0.200 0.505 25.00 280.0 1 0.000 

      
0.052 0.005 4.50 230.0 1 0.897 
0.072 0.055 6.00 235.0 1 0.881 
0.092 0.105 7.50 240.0 1 0.839 
0.112 0.155 9.00 245.0 1 0.769 
0.132 0.205 10.50 250.0 1 0.672 
0.152 0.255 12.00 255.0 1 0.731 
0.172 0.305 13.50 260.0 1 0.643 
0.192 0.355 15.00 265.0 1 0.591 
0.212 0.405 16.50 270.0 1 0.541 
0.232 0.455 18.00 275.0 1 0.513 
0.252 0.505 19.50 280.0 1 0.517 

 a) 1: water; 2: ice; 3: undetermined 
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6.4. Monte Carlo Simulation Study  

6.4.1. Single-Phase Clouds - Plate Crystal Ice Cloud  

A Monte Carlo simulation scheme has been developed to assess the impact of multiple scattering 
on the depolarization signal.  The code models the photon scattering processes within the cloud 
layer using a ray tracing scheme and carries the full phase matrix through each scattering event 
[Hu et al., 2001].  Figure 6.7 shows profiles of particle depolarization ratio δ(z) = β⊥(z) / β ||(z) 
and backscatter intensity [β⊥(z) + β ||(z)] calculated for ice clouds composed of hexagonal plate 
crystals with optical depths, τ, of 0.9, 2.7, and 50. The single-scattering depolarization ratio at 
180 degrees for this crystal type is ~ 30 %. For all three cases, δ(z) immediately below cloud top 
is greater than 0.3.   

δ(z) remains virtually constant with penetration depth for the two lower optical depth cases, but 
increases to about 0.6 in the topmost 100 meters for the τ = 50 case due to multiple scattering.  
The τ = 50 case is probably unrealistically dense, corresponding to a backscatter coefficient of 
about 2.5 [km-1sr-1], even for a convective cirrus cloud. This case however does indicate that 
depolarization due to multiple scattering will have to be considered if ice clouds are encountered 
which are optically very dense. 

 

 

Figure 6.7: Calculated profiles of backscattered intensity [β⊥(z) + β||(z), dashed curves] and 
depolarization ratio [β⊥(z) / β||(z), solid curves] for plate crystal ice clouds with optical depths 
(τ) of 0.9, 2.7, and 50.  
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6.4.2. Water Cloud 

Figure 6.8 shows curves of backscatter intensity and depolarization ratio for water clouds having 
the same optical depths as the ice clouds in Figure 6.7.  The backscatter intensity profiles for 
these clouds are nearly identical to those seen for the ice cloud in Figure 6.7, but the profiles of 
depolarization ratio are markedly different.  δ is near zero in the first bin within the cloud for all 
values of τ, and increases with penetration into the cloud due to multiple scattering.  For the τ = 
0.9 and τ = 2.7 cases the increase in depolarization is relatively small.  However, for the τ = 50 
case the increase in depolarization in the first 100 meters of the cloud is even greater than in the 
cirrus case above.  The depolarization at a depth of 100 meters into the cloud is about the same 
as in the cirrus case, roughly 50%, but the rate of increase in depolarization is greater than for the 
cirrus cloud.  

 

 

Figure 6.8: Calculated profiles of backscatter intensity [β⊥(z) + β||(z), dashed curves] and 
depolarization ratio [β⊥(z) / β||(z), solid curves] for water clouds with τ = 0.9, 2.7, and 50.  

6.4.3. Simulations of Mixed Phase Clouds 

A great deal of experimental evidence exists showing that near-range depolarizing layers do not 
impair the ability of lidar to detect non-depolarizing layers further away [e.g., Winker and 
Osborn, 1991]. Therefore, the distribution of water and ice within mixed-phase clouds can be 
observed, subject to the limitation that the lidar signal will be unable to completely penetrate 
optically dense clouds.   

To demonstrate this, Figure 6.9 shows results from Monte Carlo simulations run for clouds of 
optical depth 2 having identical extinction coefficient profiles (shown as the red and blue step-
function curves in the figures), but  with different ice/water phase profiles.  Frame (a) represents 
two layers of water cloud, while frame (b) represents two layers of ice cloud. Frame (c) 
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represents a 100-m water layer overlying a 900-m thick ice cloud and frame (d) represents a 100-
m ice layer overlying a 900-m thick water cloud.  While the backscatter intensity (dotted black) 
profiles are very similar for all four cases, the depolarization ratio (solid black) profiles are quite 
different.  In the future, tests will be developed to identify mixed-phase clouds and to locate 
regions of ice and water within the clouds. 
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Figure 6.9: Calculated profiles of backscatter intensity [β⊥(z) + β||(z), dashed curves] and 
depolarization ratio [β⊥(z) / β||(z), solid curves] for single-phase and mixed-phase clouds with τ 
= 2.7.   

6.5. Ongoing improvements on mixed-phase clouds 
Future algorithm improvements will include the identification of mixed-phase clouds and of 
oriented plate particles. The type of mixed-phase clouds to be classified will include 

1. Water over ice 
2. Ice over water 
3. Plates over ice 
4. Ice over plates 
5. Water mixed with ice  

Characteristics to consider in discriminating water and ice in mixed phase clouds are:  
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• the single scattering depolarization ratios for water clouds are close to zero  

• depolarization ratios for ice clouds with randomly oriented crystals are much larger (in 
the neighborhood of 0.4) 

• multiple scattering increases depolarization ratios of water clouds and makes cloud phase 
discriminations more difficult 

• depolarization ratios for some ice clouds (e.g., oriented plates) can be similar to water 
clouds 

Figure 6.10 presents an example of the water-over- ice identification using layer- integrated 
depolarization. Dotted curves are simulated layer integrated depolarization ratios as a function of 
layer integrated backscatter based on the Monte-Carlo simulation. The integration is from the 
cloud top toward the base. Six situations of layer thickness have been considered. For all cases, 
the integrated depolarization ratio increases gradually with increasing penetration into the water 
layer (increasing the layer integrated backscatter) due to the multiple scattering, though the 
single scattering depolarization would be zero if we assume spherical water droplets. A sharp 
increase occurs at the interfaces of the water and ice layers, because of high depolarization ratio 
of the ice particles.  

 
Figure 6.10: Relationship between integrated depolarization and integrated backscatter for 
water over ice.  The solid blue line indicates the oriented plate’s threshold; the solid red line 
shows the sphere/non-sphere threshold; and the solid green line is the ice threshold. 

The layers for this example can be identified by setting three threshold curves (solid curves in 
Figure 6.10).  For any layer, if the integrated depolarization rises above the green curve, the 
cloud consists of ice over water.  If the integrated depolarization remains between the red and 
blue curves for the entire depth of the cloud, the cloud is pure water.  If the integrated 
depolarization falls below the blue curve, a region of oriented plates (ice) is indicated. However, 
if the integrated depolarization lies in between the green and red curves, the cloud phase is 
undetermined (mixed water and ice or mixed water, ice and plate, etc.) Details will be provided 
in the next release of this document. 



–  CALIPSO/CALIOP Scene Classification ATBD  – 

 

Page 38 of 56 

7. Computing Lidar Ratio for Elevated Layers 
The extinction-to-backscatter ratio or the lidar ratio, defined as S = σ / β , where σ and β  are 
respectively extinction and backscatter coefficients, is an intensive particle property. It does not 
depend on the number density of the particles but rather on such physical and chemical 
properties as size distribution, particle shape, and composition. In the aerosol case, these 
properties depend primarily on the source of the aerosol and such factors as mixing, transport, 
and hydration. The lidar ratio is an important parameter used in the retrieval of feature 
extinction, and subsequently the optical depth, from lidar backscatter measurements. There are 
two unknowns, extinction and backscatter, in the lidar equation. A unique solution is only 
possible if a relationship can be established (or prescribed) between the two unknowns such that 
these are combined into one variable. A general and widely used assumption is that the lidar ratio 
is constant throughout a feature layer. Thus, analytical solutions can be derived from the lidar 
equation, based on which solutions lidar signal can be inverted to derive particulate scattering 
parameters. This assumption has been adopted in the CALIOP data processing.  

For some layers where molecular scattering signals are available both above and below the 
feature, the SCA will compute the lidar ratio from lidar measurements using the transmittance-
constraint lidar retrieval method. The transmittance method is introduced in this section. For the 
non-elevated layers, on the other hand, the SCA will choose a model and lidar ratio based on the 
identified feature type. The selection of model and lidar ratio is introduced in Sections 8 and 9, 
respectively, for the non-elevated aerosol and cloud layers.  

7.1. Transmittance-Constraint Lidar Retrieval Method 
The transmittance method requires clear air (molecular scattering) above and below the layer, 
from which the layer transmittance and consequently optical depth can be determined [Fernald 
et al., 1972; Young, 1995]. The basis of the method is the relationship between optical depth and 
integrated attenuated backscatter, described by the following equation [Platt, 1973]: 

 ( )1 exp 2
2 S

− −
′ =

ητ
γ

η
 (7.1)  

Here γ′ is the integrated attenuated backscatter from layer top to base,  

 2( ) ( )
base

top
r T r drγ β′ = ∫  (7.2)  

where τ is optical depth and η is a layer-effective multiple scattering parameter. Note that Eq. 
(7.1) is valid for the single component layers where molecular scattering is negligibly small 
compared with particulate scattering (e.g., in clouds). However, in aerosol layers, the molecular 
scattering can be significant and must be taken into account in using Eq. (7.1) to compute lidar 
ratio. To make use of Eq. (7.1), a technique has been developed to correct for the molecular 
scattering. Figure 7.1 illustrates the computation of particulate integrated attenuated backscatter 
using the molecular scattering correction technique. The technique approximates the molecular 
scattering contribution to the total integrated attenuated backscatter with a trapezoid as illustrated 
in Figure 7.1 (the area in gray). The particulate integrated attenuated backscatter is estimated by 



–  CALIPSO/CALIOP Scene Classification ATBD  – 

 

Page 39 of 56 

subtracting the trapezoid from the total integrated attenuated backscatter, i.e., the area in blue in 
Figure 7.1. 

If we define an effective lidar ratio, S* = ηS, and substitute the effective two-way transmittance, 
T2 = exp(-2ητ), we can rewrite Eq. (7.1) as follows: 

 21
*

2
T

S
γ

−
=

′
 (7.3)  

The effective two-way transmittance is typically obtained by fitting the return both above and 
below a feature to a reference profile [Young, 1995].  The SCA then estimates the uncertainties 
in the observationally-derived value of S and sets a flag indicating whether the extinction 
retrieval (see PC-SCI-202, part 3) should perform a retrieval using the observational value or the 
model-derived value. 

 

Figure 7.1: Computation of particulate integrated attenuated backscatter for elevated layers. 
Molecular scattering contribution to the total integrated attenuated backscatter is approximated 
as the trapezoid area in gray; the area in blue is the estimate of particulate integrated 
attenuated backscatter that is used to compute S* using Eq. (7.1) or (7.3). 
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7.2. Computing Effective Lidar Ratio Uncertainty 
The expression for the lidar ratio uncertainty is  

 ( )
( )

( ) ( ) ( )2 2* 2

2 2 2 2 2 2*

1
1 1

hi lo

hi lo

Var S Var C Var C VarT
T C T CS

γ
γ

′        
= + +         ′− −        

. (7.4)  

Chi and Clo are normalization constants calculated both immediately above (Chi) and immediately 
below (Clo), and are computed by normalizing the measured signal to the molecular model over 
some altitude range.  Normalization constants are related to the profile system constant via the 
following equation: ( ) ( )2

norm calC r C T r= ⋅ . The third term on the right hand side is the 
contribution due to the error in the computed particulate integrated attenuated backscatter 
including measurement noise and the error of trapezoid approximation of molecular scattering. 
The relative error of the computed effective lidar ratio S* is the square-root of the left hand side 
of Eq. (7.4). 
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8. Selection of Aerosol Model 

8.1. Background 
For cases where the aerosol lidar ratio, Sa, is not computed from layer transmittance, the value 
used in the lidar inversions is derived from identification of the type of aerosol, a process we 
shall refer to hereafter as ‘aerosol typing’. In this section we discuss how the SCA determines the 
aerosol type, chooses the appropriate aerosol model for the type, and determines the appropriate 
Sa and scattering phase function.   

8.2. Algorithm Overview 
After discriminating cloud and aerosol layers, the SCA attempts to identify the type of aerosol in 
the layer. A look-up table is used to associate a lidar ratio and other properties with that layer. 
This has several purposes: attribution of aerosol radiative forcing to natural or anthropogenic 
emissions requires the determination of the source of the aerosol; aerosol radiative properties 
vary significantly by type; and, most directly, determination of aerosol type allows an estimate of 
Sa. By “type” we mean an aerosol mixture which is characteristic of a region or an air mass. The 
mixture observed at a given location depends on the local and remote aerosol sources and wind 
trajectories, internal and external mixing, the state of hydration, and chemical processes which 
may have occurred during transport.  

In contrast to the approach adopted by MISR, which is to define pure aerosol types which are 
assumed to be externally mixed [Kahn et al., 2001], in the CALIOP approach each aerosol type 
is assumed to be a mixture of aerosol particles of different compositions, where the mixing can 
be internal, external or both. The underlying paradigm of the type classification is that the variety 
of emission sources and atmospheric processes will act to produce air masses with a typical, 
identifiable aerosol “type”. This is an idealization, but one that allows us to classify aerosols 
based on observations and location in a way to gain insight into the geographic distribution of 
aerosol types and constrain the possible values of Sa for use in aerosol extinction retrievals.  

The Sa value is determined on a case by case basis and depends on the aerosol composition, size 
distribution, and shape. Several studies have been conducted to determine Sa values characteristic 
of different aerosol types. Although the assumption that Sa is constant throughout the vertical 
column has been widely used in the lidar community, recent studies [Ansmann et al., 2001; 
Ferrare et al., 2001] have shown that Sa can vary significantly with altitude. In the baseline 
version of the algorithm Sa is selected independently for each aerosol layer in a vertical column, 
but Sa is assumed to be constant within each layer.   

8.3. CALIOP Aerosol Models 
The multi-year AERONET data archive has been analyzed using a clustering algorithm to 
determine characteristic aerosol types that are defined in terms of physical and optical properties 
such as complex refractive indices, geometric mean radii and standard deviations, single 
scattering albedos, etc. [Omar et al., 2005]. AERONET is a global network of multi-wavelength 
sun photometers designed to make sky radiance measurements, allowing inversions of aerosol 
microphysical properties, which has collected data for up to a decade in some locations [Dubovik 
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and King, 2000; Holben et al., 1998]. AERONET retrieves aerosol fine and coarse mode size 
distribution parameters and refractive indices at several wavelengths, based on the assumption of 
a bimodal log normal distribution and spherical or spheroidal particles. From the size and 
refractive index data retrieved by AERONET, Mie theory is used to compute the lidar ratios at 
the two CALIOP wavelengths and the aerosol backscatter color ratio, as well as the complete 
phase function, which is needed to estimate multiple scattering effects.  The cluster analysis 
identified six aerosol ‘mixture types’ representative of the aerosol mixtures most frequently 
present at the AERONET sites. 

The CALIOP aerosol product includes both aerosol extinction and aerosol type. Aerosol is 
classified as one of six types: desert dust, smoke from biomass burning, clean continental, 
polluted continental, marine, and polluted dust.  Arctic haze is modeled as polluted continental. 
Desert dust is mostly mineral soil; biomass burning is an aged smoke aerosol consisting 
primarily of soot and organic carbon (OC), background aerosol (also referred to as clean 
continental) is a lightly loaded aerosol consisting of sulfates (SO4

2-), nitrates (NO3
-), OC, and 

ammonium (NH4
+); polluted continental is background aerosol with a substantial fraction of 

urban pollution; marine aerosol consists primarily of seasalt (NaCl); and polluted dust is a 
mixture of desert dust and smoke. While this set does not cover all possible aerosol mixing 
scenarios, it accounts for a majority of mesoscale aerosol characteristics. In essence the 
algorithm trades off complex transient multi-component mixtures for relatively stable layers with 
large horizontal extent (10-1000 km). 

8.4. CALIOP Type-Specific Sa  
CALIOP will produce two Level 2 aerosol extinction products derived using different choices of 
Sa. An approximate extinction product will be derived using a fixed extinction-to-backscatter 
ratio (currently, Sa = 35 sr). This value corresponds to Sa of the clean continental and is 
intermediate between high and low values of Sa encountered in the atmosphere.  Analyses of the 
AERONET dataset described in Omar et al. [2005] show that clean background aerosol is 
frequently encountered in the atmosphere. In addition, experience with LITE measurements 
shows that this value is  likely to result in stable extinction retrievals.  The second extinction 
product is derived using the best estimate of Sa, derived from CALIOP measurements and the 
most up-to-date field observations. This algorithm uses information on surface type to aid in 
selecting values of Sa, which may result in abrupt and artificial changes in aerosol extinction and 
optical depth, and regionally correlated errors in the retrieved aerosol properties.  Comparison of 
the best-estimate retrieval with the fixed-Sa retrieval provides a measure of the dependence of the  
derived extinction and optical depth on the algorithm used to select Sa.  We discuss the basis of 
the Sa estimates and describe the selection algorithm below. The goal is to constrain the 
uncertainty in Sa to no more than 30%. Given the observed range of variability of Sa between 10 
and 110 sr [Anderson et al., 2000b] and the modeled range of 15 – 80 sr [Ackermann, 1998],  we 
only need to select among a small set of values to meet the 30% requirement over the whole 
range of observed Sa values. 
The derivation of Sa from AERONET measurements has not yet been validated. In addition, 
because AERONET produces column  retrievals, care must be taken because multiple layers of 
different aerosol types will lead to erroneous estimates of the intensive aerosol properties. 
Therefore, for each aerosol model obtained from the cluster analysis of AERONET 
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measurements, a lidar ratio was calculated and compared with field measurements of Sa for that 
aerosol type. These measurements, primarily at 532 nm, come from a variety of techniques: 180-
nephelometer [Anderson et al., 2000], Raman lidar [Ferrare et al., 2001; Franke et al., 2001; 
Müller et al., 2000], slant path techniques, and transmittance methods [Young, 1995]. The 
AERONET-derived model parameters were adjusted, when necessary, to bring the derived lidar 
ratio into better agreement with measurements.  

8.5. Aerosol Types and Sa values 
Of the six AERONET clusters, three (desert dust, biomass burning, polluted continental) were 
adopted directly as CALIOP aerosol models.  Three additional models (marine, polluted dust, 
and clean continental) were built either directly from measurements of size distributions and 
complex refractive indices, or by adjusting AERONET-derived model parameters to generate 
observed Sa values. Volume size distributions of the 6 CALIOP aerosol models are shown in 
Figure 8.1, and the associated microphysical and derived properties are listed in Table 8.1. Once 
the aerosol type is identified, the associated Sa value is the best-guess value to be used in the 
extinction retrieval. The set of aerosol models described here is an initial result. Further research 
will be conducted to improve these models. There is currently no dataset suitable for testing the 
performance of the algorithm. Therefore, much of this work will have to wait till we have on-
orbit data and have conducted validation campaigns. 

8.5.1. Background Aerosol 

Since the AERONET observations corresponding to the background cluster have low mean 
optical depths (< 0.05 at 673 nm), the microphysical properties derived from these are likely to 
have large uncertainties [Dubovik et al., 2002]. The CALIOP background  (clean continental) 
aerosol model was derived by fitting size distributions and refractive indices to measurements of 
Sa of long-range continental transport [Anderson et al., 2000], resulting in a Sa value of 35 sr. 
Note that the Sa value for this aerosol type is used to generate the approximate extinction product 
described above. A Sa value of 32 ±6 sr for clean northern hemisphere aerosol was measured 
during Aerosols99 [Voss et al., 2001]. A similar aerosol termed ‘background- like’ aerosol and 
originating on the European continent but devoid of any strong biomass or fossil fuel burning 
signature yielded a Sa value of 35 sr [Ansmann et al., 2001]. 

8.5.2. Marine  

Since the AERONET marine aerosol cluster contains only a small number of records (< 4% of 
the total), the CALIOP marine aerosol model is instead derived from parameters measured 
during the SEAS experiment [Masonis et al., 2002]. This study estimates a Sa for marine aerosols 
of 20 sr and is consistent with marine aerosol Sa estimates by others [Ansmann et al., 2001; 
Flamant et al., 1998; Reagan et al., 2001]. In their climatological study of oceanic AERONET 
sites, Cattrall and Reagan (2005), report a Sa value 28±5 sr. In the SEAS experiment, the Sa 
value is measured directly (optical method) or modeled (using measured size distributions). The 
optical method, using 180o-backscatter nephelometer, integrating nephelometer, and an 
absorption photometer, yields a value of Sa = 25.4±3.5 sr. The modeled values are 20.3 sr and 
16.5 sr using direct size data and log normal distributions, respectively.  
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8.5.3. Polluted Dust 

The polluted dust model is designed to account for episodes of mixed dust and biomass burning 
smoke which are frequent in regions close to strong sources of both types, for example in West 
Africa (cf. MODIS images) and Asia (cf. ACE-Asia, INDOEX). The CALIOP polluted dust 
model is a mixture of the AERONET desert dust (coarse mode) and biomass burning (fine mode) 
clusters. This model yields an Sa value of 65 sr which is comparable to similar measurements of 
polluted dust [Liu et al., 2002; Voss et al., 2001].  

Table 8.1 Physical and Optical Characteristics of the CALIOP Aerosol Models  

Optical/Physical 
Property 

Desert 
Dust 

Biomass 
Burning 

 Clean 
Continental 

Polluted 
Continental 

Marine 
(Seasalt) 

Polluted 
Dust 

mr fine @ 532 nm 1.414 1.517 1.380 1.404 1.400 1.452 
mi fine @ 532 nm 0.0036 0.0234 0.0001 0.0063 0.0050 0.0109 
mr fine @ 1064 nm 1.495 1.541 1.380 1.439 1.400 1.512 
mi fine @ 1064 nm 0.0043 0.0298 0.0001 0.0073 0.0050 0.0137 
mr coarse 532 nm 1.414 1.517 1.455 1.404 1.400 1.452 
mi coarse 532 nm 0.0036 0.0234 0.0034 0.0063 0.0005 0.0109 
mr coarse 1064 nm 1.495 1.541 1.455 1.439 1.390 1.512 
mi coarse 1064 nm 0.0043 0.0298 0.0034 0.0073 0.0005 0.0137 
?  @532 nm 0.91 0.70 0.90 0.88 0.99 0.79 
Fine cut-off radius (µm) 1.00 1.00 1.00 1.00 0.60 1.00 
Fine fraction by volume 0.223 0.329 0.050 0.531 0.025 0.241 
Fine mean radius (µm) 0.1165 0.1436 0.20556 0.1577 0.150 0.1265 
GSD Fine 1.4813 1.5624 1.61 1.5257 1.600 1.5112 
Coarse fraction by 
volume 

0.777 0.671 0.950 0.469 0.975 0.759 

Coarse mean radius 
(µm) 

2.8329 3.726 2.6334 3.547 1.216 3.1617 

GSD coarse  1.9078 2.1426 1.8987 2.065 1.600 1.9942 
Color Ratio  0.79 0.67 1.39 0.72 0.53 1.1 
Sa @ 532 nm (sr) 38.1 71.3 37.7 72.7 19.1 65.3 
Sa @ 1064 nm (sr) 29.3 38.9 28.2 30.9 43.2 30.9 

Note: mr(mi) are complex real (imaginary) parts of the refractive index, ? is the single 
scattering albedo, color ratio is the ratio of the particle backscatter at 1064 nm to 532 nm 
and GSD is the geometric standard deviation of a log normal distribution. 

8.5.4. Biomass Burning 

The biomass burning cluster of AERONET measurements is used for the CALIOP biomass 
burning aerosol model.  The AERONET data yields an Sa value of 70 sr, most likely driven by 
the high imaginary refractive indices (Table 8.1). This value is not at variance with the 
measurements of Voss et al. [2001] of 60 ± 6 sr off the west coast of Africa, and Ansmann et al. 
[2001] of 70 sr for biomass burning influenced aerosol advected from the Indian subcontinent 
during INDOEX. Recent studies of a limited climatology of 26 AERONET sites [Cattrall et al., 
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2005] at which biomass burning, coal combustion, urban/industrial, oceanic, and dust are the 
predominant types found Sa values of 60±8 sr for biomass burning. 
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Figure 8.1: CALIOP Aerosol Models. The green and red numbers are the 532- and 1064-nm 
extinction-to-backscatter ratios, respectively. 

8.5.5. Desert Dust 

In the case of desert dust, the AERONET retrievals used in the cluster analysis were based on the 
assumption of spherical particles. Dust particles are non-spherical, though, which has an 
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unquantifiable effect on the accuracy of the results. Therefore, the CALIOP dust model is based 
on theoretical calculations using the dipole-dipole approximation (DDA) technique, using 
realistic compositions and irregular shapes [Kalashnikova and Sokolik, 2002]. The CALIOP 
model Sa value of 40 sr for desert dust is comparable to Sa measurements by Voss et al. (2001) 
using a Micropulse Lidar (41 ± 8 sr) for African dust, Sasano and Browell [1989] (52 ± 10 sr) 
and measurements of Liu et al. [2002] of Asian dusts (42 - 55 sr) found using a high-spectral-
resolution lidar and combined Raman and elastic-backscatter lidar values. Cattrall and Reagan 
(2005) report an Sa value of 42 ± 4 sr for desert dust locations. 

8.5.6. Polluted Continental 

The CALIOP model for polluted continental aerosol yields an Sa value of 70 sr. Measurements 
by Ansmann et al. [2001] at the Sagres island off the Portuguese coast showed the Sa value for 
pollution emanating from continental Europe to vary between 50 and 70 sr. During INDOEX, Sa 
measurements of polluted continental aerosol originating from the northern and northeastern part 
of India, known for high emissions of black carbon, were made by Franke et al. [2001]. They 
found values ranging from 49 to 70 sr. Cattrall and Reagan [2004] report an Sa value of 71 ± 10 
sr for urban/industrial locations. Measurements of a stagnant airmass at Bondville (a polluted 
continental site) yielded Sa values of 64 ± 4 sr [Anderson et al., 2000].  

8.6. Type Identification and Sa Selection Scheme 
One of the objectives of the aerosol typing algorithm is to estimate the appropriate value of Sa 
within 30% of the true value. The strategy is to identify aerosol type and then use a look-up table 
to select values of Sa and η(z) appropriate for the layer. These values are then passed on for use 
in the extinction retrieval algorithm, if necessary. The selection scheme uses the observed 
backscatter strength and depolarization to identify aerosol type, to the extent possible, from 
among one of the six types.  The depolarization is directly related to the hydration state of the 
aerosol (ie: solid or liquid).  The backscatter and depolarization signals are not sufficient to fully 
constrain the model selection, however.  Therefore, additional data is used to narrow the choices 
of aerosol types based on the lidar observables. The Sa selection algorithm uses the inputs shown 
in Table 8.3, along with the IGBP surface types listed in Table 8.2.   

Table 8.2 IGBP surface types 

1.  Evergreen Needleleaf Forest 
2.  Evergreen Broadleaf Forest 
3.  Deciduous Needleleaf Forest 
4.  Deciduous Broadleaf Forest 
5.  Mixed Deciduous Forest 
6.  Closed Shrubland  
7.  Open Shrubland  
8.  Woody Savanna 
9.  Savanna 

10.  Grassland 
11.  Permenant Wetland 
12.  Cropland 
13.  Urban 
14.  Crop/Natural Veg. Mosaic 
15.  Permanent Snow/Ice 
16.  Barren/Desert 
17.  Water Bodies 
18.  Tundra 
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Table 8.3 Inputs and outputs for the Sa selector algorithm 

INPUTS SOURCE NOTES OUTPUTS 

CALIOP Observables 

1. Elevated layer flag  SIBYL Determine lofted layer for 
transmittance calculation 

Estimated Sa using 
Sa=T2/(1-2γ ') 

2. Feature base and top heights  SIBYL   
3. Two-way feature 

transmittance (Τ2) 
 SIBYL   

4. Uncertainty in the two-way 
feature transmittance (?Τ2) 

5. Normalization constant 
uncertainty 

 SIBYL 
 

Estimate uncertainty in 
the Sa calculated from 
lofted aerosol layers using 
the transmittance method 

 

6. Integrated attenuated 532-
and 1064-nm backscatter 
(γ’)  

7. Uncertainty in the integrated 
attenuated 532-and 1064-nm 
backscatter (?γ’) 

 SIBYL 
 

 SIBYL 

 
 
Estimate a confidence 
index of aerosol type 

Aerosol type 

8. Integrated attenuated color 
ratio (χ) 

9. Uncertainty in the integrated 
attenuated color ration (?χ) 

 SIBYL Uncertainty flag in aerosol 
type 
Estimate a confidence 
index of aerosol type 

Aerosol type 

10. Integrated volume 
depolarization ratio(δ) 

11. Uncertainty in the 
integrated volume 
depolarization ratio (?δ) 

 SIBYL Uncertainty flag in aerosol 
type 
Estimate a confidence 
index of aerosol type 

Aerosol type 

Ancillary Data Sets 

1. Latitude, Longitude GIS Local sources and  Aerosol type 
2. Surface type IGBP influence on the aerosol 

type, composition, size, 
and shape 

 

4. Local solar time Level I Season Aerosol type 
(Polar) 

The input parameters - altitude, location, surface type, depolarization ratio, and mean attenuated 
backscatter coefficient measurements - are used to identify the aerosol type following one of 
eleven pathways in Figure 8.2. After launch the distributions of the integrated attenuated color 
ratio, 1064 532χ γ γ′ ′= , for each aerosol type will developed and used for type identification in later 
versions of this algorithm. The depolarization ratio is used to identify aerosol types that have a 
substantial mass fraction of non-spherical particles, e.g., a mixture of smoke and dust in 
pathways 3 and 5. 532?′  is used to discern instances of transient high aerosol loading over surfaces 
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where this is not usually expected, e.g., a smoke or dust layer over land or the ocean, pathways 
10 and 11, respectively. Once the type is identified, Sa is chosen from a lookup table consisting 
of six pairs of Sa values at 532 nm and 1064 nm. 

In Figure 8.2, pathway 1 is a lightly loaded aerosol layer found over snow/ice/tundra regions 
such as Antarctica and the clean Artic. Arctic haze, by virtue of the high integrated backscatter 
value, will be classified as polluted continental following pathway 2. Desert dust with a volume 
depolarization ratio greater than 0.2 is expected to be the predominant selection pathway for 
layers with substantial fractions of non-spherical particles (Pathway 4). Pathways 3 and 5 allow 
for mixing with biomass burning smoke, which will depress the volume depolarization ratio to a 
value below 0.2. Pathway 6 is a clean, non-desert land surface at which the aerosol loading is 
close to the background values. Pathway 7 is a highly polluted land surface such as would be 
found in urban areas. Pathway 8 accounts fo r continental pollution advected off the coast and 
entrained into the marine boundary layer. Pathway 9 is a clean marine boundary layer aerosol, 
usually found in the remote ocean, and consisting primarily of sea salt. Pathways 10 and 11 are 
lofted aerosol layers (based on the Lofted Layer Flag from the SIBYL) over land and ocean, 
respectively, of biomass burning smoke. Note that elevated dust layers are found in Pathway 4. 
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Figure 8.2: Flowchart of the CALIOP Sa selection scheme for tropospheric aerosols.  The values 
shown are the extinction-to-backscatter ratios at 532 nm and 1064 nm in parentheses. Note 
that ?′  is the integrated attenuated backscatter coefficient. 
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Studies are underway to determine optimum threshold values of d , ?′ , and (eventually) ?  to be 
used in the typing scheme. The values shown in Figure 8.2 are initial estimates based on LITE 
measurements and, in the case of depolarization, on a limited set of observations and models 
[Gobbi et al., 2000; Murayama et al., 1999; Reagan et al., 2001; Sakai et al., 2003]. The goal is 
to base typing decisions on these observables as much as possible and avoid the major 
dependence on geographic information. Therefore, the threshold values of d , ?′ , and ?  have 
been implemented as runt ime parameters that can be adjusted using a configuration script. When 
lofted layers are encountered under favorable conditions, Sa is computed directly from the 
integrated backscatter and transmission.  

Currently, data from the Cloud Physics Lidar (CPL, a two-wavelength, polarization lidar which 
flies on the NASA ER-2, [McGill et al., 2003]) is being used to develop distributions of the lidar 
observables for use in the selection algorithm. We expect the algorithm will evolve significantly 
after the CALIPSO launch, when CALIOP will provide a much larger set of d , ?′ , and ?  
measurements than is currently available. Combined with carefully planned validation 
campaigns, this will allow improvements to the method and improved accuracy and confidence 
in the selection of Sa. The aerosol type confidence flags are functions of uncertainties in the 532 
nm and 1064 nm integrated backscatter values and are discussed in the QA/QC section of the 
ATBD. 
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9. Selection of Cloud Model and Cloud Typing 
The Cloud Model Algorithm (CMA) will determine consistent values of the cloud lidar ratio, Sc, 
and the multiple scattering function, ηc(z), for all cloud layers. Sc is assumed to be constant 
throughout the cloud layer (except within mixed-phase clouds).  As mentioned in Section 2, 
whenever possible, Sc will be derived directly from the measured data via the transmittance-
constraint technique (see Section 7).  Otherwise, a model-based lidar ratio for a given cloud layer 
will be selected.  In either case, the selected value will be passed to the extinction algorithm for 
use in retrieving extinction and backscatter coefficients.  

For water clouds, the SCA chooses a constant value of lidar ratio of 18 sr, based on theoretical 
studies [Pinnick et al., 1983]. The approach used in determining a model-based value of Sc for 
cirrus clouds is to use an empirical relation between temperature and Sc, shown in Figure 9.1:, 
which is based on observations in the tropics and at mid- latitudes (Platt, private communication).  
According to Figure 9.1:, Sc is selected according to the simple rule:  

 1.2591 6.698.cS T= − −  (9.1)  

where T is mid-cloud temperature (in Celsius) derived from the observed cloud layer heights 
using the ancillary met data product.  For each determination of Sc, the CMA will estimate the 
uncertainty in this value based on the observed spread in values around the regression line. 

It has been suggested that a correlation may exist between Sc and depolarization [Reichardt et al., 
2002, in press], in which case it would be beneficial to select Sc using both temperature and 
depolarization.  However, the relationship proposed in Reichardt et al. [2002] is contradicted by 
other observations [Eloranta, 2000] and requires further study to determine if it is general.  

S = -1.2591T- 6.698
R2 = 0.8211
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Figure 9.1:  Empirical relation between lidar ratio and mid-cloud temperature (Platt, private 
comm.) 

The multiple scattering function selected by the CMA should be consistent with the selected 
value of the lidar ratio.  However, both the modeled and the observationally-derived Sc values 
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have been determined from direct measurements, without knowledge of multiple scattering 
effects or the ice crystal phase function.  The definition of multiple scattering functions which 
are consistent with Sc values is provided in the multiple scattering section of this ATBD. 

The SCA also performs cloud sub-typing based on lidar measurements. The ISCCP cloud-top 
pressure/optical depth classification scheme [Rossow and Schiffer, 1991] has been widely used 
for satellite cloud climatologies. Because CALIOP cannot measure optical depths greater than 
about 3, the ISCCP scheme cannot be used directly in the CALIOP cloud sub-typing. The ISCCP 
pressure boundaries at 680 mb and 440 mb are adopted, however, to classify low/middle/high 
clouds. The flow of the CALIOP cloud sub-typing algorithm is illustrated in Figure 9.2:. Cloud 
subtyping is based on cloud-top pressure derived from lidar cloud-top height and cloud fraction 
Ac.  Clouds are classified as transparent or opaque by checking whether or not the surface or a 
lower layer can be seen (refer to the CALIOP Feature Finder ATBD). If the surface or a lower 
layer can be seen, then the layer is transparent; otherwise, the layer is opaque.  We expect that 
cloud layers with optical depths greater than 3-5, depending on conditions, will appear opaque. 
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Figure 9.2: Flow of the sub-typing of clouds. 

The cloud fraction, Ac, (used only for clouds with tops < 3 km) is computed along a line over an 
80 km horizontal segment. For the baseline version of the code, this parameter is simply 
estimated from the ratio of the number of 1-km profiles with clouds found below 3 km to the 
number of the total 1-km profiles in the 80-km segment (i.e., 80). Further considerations are 
however necessary for more complicated cases. For example, within an 80-km segment there 
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may be overlying opaque clouds above 3 km. In this case, the detection of lower features is not 
possible due to the absorption of the overlying opaque cloud layers and hence the true cloud 
fraction cannot be observed. Treatment of these complicated cases will be addressed in future 
algorithm improvements  The cloud sub-typing algorithm will be modified and improved using 
observational data acquired after the launch.  
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